1. A box is pulled along the floor using two identical ropes. The tensions in the ropes act in the directions shown and have magnitudes T_{P} and T_{Q}. The box moves at a constant speed in the direction shown.

The magnitude of the frictional force acting on the box is equal to
A $T_{\mathrm{P}} \sin \theta+T_{\mathrm{Q}} \sin 2 \theta$
B $T_{\mathrm{P}} \cos \theta+T_{\mathrm{Q}} \cos 2 \theta$C $T_{\mathrm{P}}+T_{\mathrm{Q}}$
D zero

2 A potential difference of 600 mV is applied across a circuit component.
What is the energy transferred when a charge of 2 C flows through the component?
A 1200 JB 300 JC 1.33 JD 1.2 J

3 The diagram represents a resistor of resistance R in a series circuit with a cell of e.m.f. ε and internal resistance r.

Which of the following correctly gives the potential difference V across the internal resistance?
$\square \quad \mathbf{A} \quad V=\frac{\varepsilon(R+r)}{r}$
$\square \quad \mathbf{B} \quad V=\frac{\varepsilon R}{R+r}$C $V=\frac{\varepsilon(R+r)}{R}$D $V=\frac{\varepsilon r}{(R+r)}$

4 A combination of resistors is connected to a 12 V supply of negligible internal resistance.

The potential difference between points A and B is
\square A 4 VB 6 V
\square C 8 V
\square D 12 V

5 The diagram shows a resistor of resistance R across a cell of e.m.f. ε and internal resistance r.

Which of the following is a correct expression for the current I ?A $\mid=\varepsilon / r$B $\mid=\varepsilon / R$C $\quad \mid=\varepsilon /(R+r)$D $\quad \mid=\varepsilon /(R-r)$

6 Which of the following expresses the volt in SI base units?
$\square \mathbf{A ~ k g ~ m}^{2} \mathrm{~s}^{2} \mathrm{C}^{1}$B $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{3} \mathrm{C}$C $\mathrm{kg} \mathrm{m}^{2} \mathrm{sA}^{1}$
■ D $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{3} \mathrm{~A}^{1}$

